skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Villanustre, Flavio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Attackers are increasingly using model inversion attacks, in which the outputs of the model can be used to reconstruct confidential or private information to target machine learning models, especially those that handle sensitive financial data. We propose an attack model that exploits the output of classification models to infer details about the training data. We implement our experiments on the HPCC Systems platform. HPCC Systems is known for its robust data processing capabilities. Our approach systematically exploits the output of financial data-based classification models to reconstruct sensitive attributes, thereby demonstrating the potential risks and vulnerabilities resulting from an attack. In our research, we also have tested some defensive strategies to secure the model against inversion attack. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  2. Furht, Borko; Khoshgoftaar, Taghi (Ed.)
    Acquiring labeled datasets often incurs substantial costs primarily due to the requirement of expert human intervention to produce accurate and reliable class labels. In the modern data landscape, an overwhelming proportion of newly generated data is unlabeled. This paradigm is especially evident in domains such as fraud detection and datasets for credit card fraud detection. These types of data have their own difficulties associated with being highly class imbalanced, which poses its own challenges to machine learning and classification. Our research addresses these challenges by extensively evaluating a novel methodology for synthesizing class labels for highly imbalanced credit card fraud data. The methodology uses an autoencoder as its underlying learner to effectively learn from dataset features to produce an error metric for use in creating new binary class labels. The methodology aims to automatically produce new labels with minimal expert input. These class labels are then used to train supervised classifiers for fraud detection. Our empirical results show that the synthesized labels are of high enough quality to produce classifiers that significantly outperform a baseline learner comparison when using area under the precision-recall curve (AUPRC). We also present results of varying levels of positive-labeled instances and their effect on classifier performance. Results show that AUPRC performance improves as more instances are labeled positive and belong to the minority class. Our methodology thereby effectively addresses the concerns of high class imbalance in machine learning by creating new and effective class labels. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper. 
    more » « less
  4. null (Ed.)
    Clustering algorithms are an important part of unsupervised machine learning. With Big Data, applying clustering algorithms such as KMeans has become a challenge due to the significantly larger volume of data and the computational complexity of the standard approach, Lloyd's algorithm. This work aims to tackle this challenge by transforming the classic clustering KMeans algorithm to be highly scalable and to be able to operate on Big Data. We leverage the distributed computing environment of the HPCC Systems platform. The presented KMeans algorithm adopts a hybrid parallelism method to achieve a massively scalable parallel KMeans. Our approach can save a significant amount of time of researchers and machine learning practitioners who train hundreds of models on a daily basis. The performance is evaluated with different size datasets and clusters and the results show a significant scalabilty of the scalable parallel KMeans algorithm. 
    more » « less